Coloc data structure

Description of coloc data structure

check_dataset() check.dataset()

check_dataset

Bayesian enumeration of hypotheses

Two trait colocalisation and single trait fine mapping under single causal variant assumptions

coloc.abf()

Fully Bayesian colocalisation analysis using Bayes Factors

finemap.abf()

Bayesian finemapping analysis

Sensitivity analysis

Check how robust inference is to changing prior parameter values

sensitivity()

Prior sensitivity for coloc

Relaxing the single variant assumption

use conditioning or masking to account for multiple independent causal variants per trait

coloc.susie()

run coloc using susie to detect separate signals

runsusie()

Run susie on a single coloc-structured dataset

Others

included for completeness, but the main functions you need should be in the sections above

Var.data()

Var.data

Var.data.cc()

Var.data

approx.bf.estimates()

Internal function, approx.bf.estimates

approx.bf.p()

Internal function, approx.bf.p

bin2lin()

binomial to linear regression conversion

check_alignment() check.alignment()

check alignment

coloc-package

Colocalisation tests of two genetic traits

coloc.bf_bf()

Coloc data through Bayes factors

coloc.detail()

Bayesian colocalisation analysis with detailed output

coloc.process()

Post process a coloc.details result using masking

coloc.signals()

Coloc with multiple signals per trait

coloc.susie_bf()

run coloc using susie to detect separate signals

coloc_test_data

Simulated data to use in testing and vignettes in the coloc package

combine.abf()

combine.abf

est_cond()

generate conditional summary stats

estgeno.1.ctl() estgeno.1.cse()

estgeno1

find.best.signal()

Pick out snp with most extreme Z score

findends()

trim a dataset to central peak(s)

findpeaks()

trim a dataset to only peak(s)

finemap.bf()

Finemap data through Bayes factors

finemap.signals()

Finemap multiple signals in a single dataset

logbf_to_pp()

logbf 2 pp

logdiff()

logdiff

logsum()

logsum

map_cond()

find the next most significant SNP, conditioning on a list of sigsnps

map_mask()

find the next most significant SNP, masking a list of sigsnps

plot(<coloc_abf>)

plot a coloc_abf object

plot_dataset() plot_dataset()

plot a coloc dataset

print(<coloc_abf>)

print.coloc_abf

process.dataset()

process.dataset

sdY.est()

Estimate trait variance, internal function

subset_dataset()

subset_dataset