All functions

GUESSFM

GUESSFM

abf.calc()

Calculate Approximate Bayes Factors

abf.fit.parallel.setup()

Internal function: create parallel.dir, save necessary files

abf.speedglm.fit()

abf.speedglm.fit

abf2snpmod()

abf2snpmod

snps() tags()

Accessors for groups objects

addlines()

addlines

best.models()

Best models

best.snps()

Best SNPs

calc.maxmin()

calculate max or min of subset of a matrix

check.merge()

Check if snp groups can be combined

cond.best()

cond.best

convert()

Convert from old definitions of groups, tags classes to new

cummean()

internal function: cumulative mean

ess.read()

ess.read

ess2snpmod()

ess2snpmod

expand.tags()

Expand tags for a snpmod object

ggbed()

Plot a bed file

ggchr()

ggchr

ggld()

ggld

ggsnp()

ggsnp

group.multi()

Group SNPs

groups-class

Group focused class for holding information about sets of SNPs defined by their mutual LD

tagsof() taggedby() `[`(<groups>,<character>,<missing>,<missing>) `[`(<groups>,<numeric>,<missing>,<missing>) `[`(<groups>,<logical>,<missing>,<missing>) `[`(<tags>,<character>,<missing>,<missing>) `[[`(<groups>,<numeric>) `[[`(<groups>,<logical>) `[[`(<groups>,<character>)

tagsof shows tags for a named character vector of SNPs

groups.merge()

merge groups

guess.read()

guess.read

guess.summ()

Summarise a snpmod object

impute.missing()

Fill in missing values in SnpMatrix object

makestr()

Paste a list of SNPs in a consistent way to create a model name

model.union()

Model unions

nmodes()

nmodes

overlap()

overlap

pattern.plot()

pattern.plot

plot(<snppicker>,<missing>) plot(<ppnsnp>,<missing>)

Plots

plot_diffuse()

Diffusion plot

plotsummary()

Summary plots

pp.nsnp()

Summarize the posterior model support by the number of SNPs contained in a model

ppnsnp-class

Class to hold results of pp.nsnp

qc()

Quality control

read.decode()

read.decode

read.ess()

ess.read

read.snpmod()

read.snpmod

run.bvs()

Bayesian variable selection

scalepos()

Scale SNP positions

show(<snpmod>) show(<snppicker>) show(<ppnsnp>) show(<tags>) show(<groups>)

Show

show.ld()

show.ld

signal.plot()

Signal Plot

skewness()

skewness

snp.picker()

snp.picker

snpin()

Check whether a snp is in a snppicker, groups or tags object

snpmatrix.combine()

snpmatrix.combine

snpmod-class

Class to hold data relating to multiple models fitted to SNP data

snpmod.add()

snpmod.add

snppicker-class

Class to hold results of snp.picker algorithm

`[`(<snppicker>,<ANY>,<missing>,<missing>) `[[`(<snppicker>,<ANY>)

Subset snppicker object

snpprior()

snpprior

snps.from.correlated.models()

snps.from.correlated.models

summ.setminmax()

summ.setminmax

summary(<snppicker>) summary(<groups>)

Summaries

tag()

tag

textvenn()

textvenn

union()

Create a union of groups, snppicker or tags objects

xscale()

xscale