Skip to contents

Coloc data structure

Description of coloc data structure

Bayesian enumeration of hypotheses

Two trait colocalisation and single trait fine mapping under single causal variant assumptions

coloc.abf()
Fully Bayesian colocalisation analysis using Bayes Factors
finemap.abf()
Bayesian finemapping analysis

Sensitivity analysis

Check how robust inference is to changing prior parameter values

sensitivity()
Prior sensitivity for coloc

Relaxing the single variant assumption

use conditioning or masking to account for multiple independent causal variants per trait

coloc.susie()
run coloc using susie to detect separate signals
runsusie()
Run susie on a single coloc-structured dataset

Visualisation

see stuff

plot_dataset()
plot a coloc dataset
plot_datasets()
plot a pair of coloc datasets, highlighting the snps that are common between them
plot_extended_datasets()
Draw extended plot of summary statistics for two coloc datasets

Others

included for completeness, but the main functions you need should be in the sections above

annotate_susie()
annotate susie_rss output for use with coloc_susie
approx.bf.estimates()
Internal function, approx.bf.estimates
approx.bf.p()
Internal function, approx.bf.p
bin2lin()
binomial to linear regression conversion
check_alignment() check.alignment()
check alignment
-package coloc-package
Colocalisation tests of two genetic traits
coloc.bf_bf()
Coloc data through Bayes factors
coloc.detail()
Bayesian colocalisation analysis with detailed output
coloc.process()
Post process a coloc.details result using masking
coloc.signals()
Coloc with multiple signals per trait
coloc.susie_bf()
run coloc using susie to detect separate signals
coloc_test_data
Simulated data to use in testing and vignettes in the coloc package
combine.abf()
combine.abf
credible.sets()
credible.sets
est_cond()
generate conditional summary stats
estgeno.1.ctl() estgeno.1.cse()
estgeno1
find.best.signal()
Pick out snp with most extreme Z score
findends()
trim a dataset to central peak(s)
findpeaks()
trim a dataset to only peak(s)
finemap.bf()
Finemap data through Bayes factors
finemap.signals()
Finemap multiple signals in a single dataset
logbf_to_pp()
logbf 2 pp
logdiff()
logdiff
logsum()
logsum
map_cond()
find the next most significant SNP, conditioning on a list of sigsnps
map_mask()
find the next most significant SNP, masking a list of sigsnps
plot(<coloc_abf>)
plot a coloc_abf object
print(<coloc_abf>)
print.coloc_abf
process.dataset()
process.dataset
sdY.est()
Estimate trait variance, internal function
subset_dataset()
subset_dataset
Var.data.cc()
Var.data
Var.data()
Var.data
eqtlgen_density_data
eQTLGen estimated distance density