
Package index
-
check_dataset()check.dataset() - check_dataset
Bayesian enumeration of hypotheses
Two trait colocalisation and single trait fine mapping under single causal variant assumptions
-
coloc.abf() - Fully Bayesian colocalisation analysis using Bayes Factors
-
finemap.abf() - Bayesian finemapping analysis
-
sensitivity() - Prior sensitivity for coloc
Relaxing the single variant assumption
use conditioning or masking to account for multiple independent causal variants per trait
-
coloc.susie() - run coloc using susie to detect separate signals
-
runsusie() - Run susie on a single coloc-structured dataset
-
plot_dataset() - plot a coloc dataset
-
plot_datasets() - plot a pair of coloc datasets, highlighting the snps that are common between them
-
plot_extended_datasets() - Draw extended plot of summary statistics for two coloc datasets
-
annotate_susie() - annotate susie_rss output for use with coloc_susie
-
approx.bf.estimates() - Internal function, approx.bf.estimates
-
approx.bf.p() - Internal function, approx.bf.p
-
bin2lin() - binomial to linear regression conversion
-
check_alignment()check.alignment() - check alignment
-
-packagecoloc-package - Colocalisation tests of two genetic traits
-
coloc.bf_bf() - Coloc data through Bayes factors
-
coloc.detail() - Bayesian colocalisation analysis with detailed output
-
coloc.process() - Post process a coloc.details result using masking
-
coloc.signals() - Coloc with multiple signals per trait
-
coloc.susie_bf() - run coloc using susie to detect separate signals
-
coloc_test_data - Simulated data to use in testing and vignettes in the coloc package
-
combine.abf() - combine.abf
-
credible.sets() - credible.sets
-
est_cond() - generate conditional summary stats
-
estgeno.1.ctl()estgeno.1.cse() - estgeno1
-
find.best.signal() - Pick out snp with most extreme Z score
-
findends() - trim a dataset to central peak(s)
-
findpeaks() - trim a dataset to only peak(s)
-
finemap.bf() - Finemap data through Bayes factors
-
finemap.signals() - Finemap multiple signals in a single dataset
-
logbf_to_pp() - logbf 2 pp
-
logdiff() - logdiff
-
logsum() - logsum
-
map_cond() - find the next most significant SNP, conditioning on a list of sigsnps
-
map_mask() - find the next most significant SNP, masking a list of sigsnps
-
plot(<coloc_abf>) - plot a coloc_abf object
-
print(<coloc_abf>) - print.coloc_abf
-
process.dataset() - process.dataset
-
sdY.est() - Estimate trait variance, internal function
-
subset_dataset() - subset_dataset
-
Var.data.cc() - Var.data
-
Var.data() - Var.data
-
eqtlgen_density_data - eQTLGen estimated distance density